MATH SOLVE

5 months ago

Q:
# Part 1 (Unit 2): Subtract Polynomials:(3−6n5−8n4)−(−6n4−3n−8n5)Part 2 (Unit 3): Solve this quadratic equation. Show all your work (steps) for full credit:4x2−2x−5=0

Accepted Solution

A:

Part 1

We have the following polynomials:

(3-6n5-8n4)

(-6n4-3n-8n5)

Subtracting the polynomials we have:

(3-6n5-8n4) - (- 6n4-3n-8n5)

n5 (-6 + 8) + n4 (-8 + 6) + 3n + 3

Rewriting:

2n5 - 2n4 + 3n + 3

Part 2

For this case we have the following polynomial:

4x2-2x-5 = 0

Using resolver we have:

x = (- b +/- root (b ^ 2 - 4 * a * c)) / (2 * a)

x = (- (- 2) +/- root ((- 2) ^ 2 - 4 * 4 * (- 5))) / (2 * 4)

x = (2 +/- root (4 + 80)) / (8)

x = (2 +/- root (84)) / (8)

x = (2 +/- root (4 * 21)) / (8)

x = (2 +/- 2raiz (21)) / (8)

x = (1 +/- root (21)) / (4)

The roots are:

x1 = (1 + root (21)) / (4)

x2 = (1 - root (21)) / (4)

We have the following polynomials:

(3-6n5-8n4)

(-6n4-3n-8n5)

Subtracting the polynomials we have:

(3-6n5-8n4) - (- 6n4-3n-8n5)

n5 (-6 + 8) + n4 (-8 + 6) + 3n + 3

Rewriting:

2n5 - 2n4 + 3n + 3

Part 2

For this case we have the following polynomial:

4x2-2x-5 = 0

Using resolver we have:

x = (- b +/- root (b ^ 2 - 4 * a * c)) / (2 * a)

x = (- (- 2) +/- root ((- 2) ^ 2 - 4 * 4 * (- 5))) / (2 * 4)

x = (2 +/- root (4 + 80)) / (8)

x = (2 +/- root (84)) / (8)

x = (2 +/- root (4 * 21)) / (8)

x = (2 +/- 2raiz (21)) / (8)

x = (1 +/- root (21)) / (4)

The roots are:

x1 = (1 + root (21)) / (4)

x2 = (1 - root (21)) / (4)